

# **Accelerator Aspects of APS-U**

```
M. Borland, Y.-C. Chae, G. Decker, L. Emery,
```

- R. Dejus, K. Harkay, J. Hoyt, Y. Ivanyushenkov, R. Lill,
- E. Moog, L. Morrison, A. Nassiri, V. Sajaev, G. Waldschmidt,
- B. X. Yang, A. Xiao, and A. Zholents

July 27, 2010

### **Outline**

- Purpose:
  - Review plans for accelerator upgrades as part of APS-U
  - Nothing about SPX in this talk
- Lattice changes
- Higher current
- Beam stability
- Undulators



# Present Performance and Goals for Upgrade

| Parameter                              | Present                       | APS-U goal                    |  |
|----------------------------------------|-------------------------------|-------------------------------|--|
| Beam energy                            | 7 GeV                         | ≥ 7 GeV                       |  |
| Beam current                           | 100 mA                        | 150~200 mA                    |  |
| Effective emittance                    | 3.15 nm                       | ≤ 3.5 nm                      |  |
| Vertical emittance                     | 35 pm                         | 10~50 pm                      |  |
| Top-up interval                        | ≥ 60 s                        | ≥ 30 s                        |  |
| Fill patterns                          | 24 & 324 bunch<br>Hybrid mode | 24 & 324 bunch<br>Hybrid mode |  |
| Operational single bunch current limit | 16 mA                         | 16 mA                         |  |
| Straight section length                | 4.8 m                         | 4.8~7.7 m                     |  |



### Long Straight Section (LSS) Scheme

- LSS can be implemented at APS with a simple scheme
  - Remove the Q2 magnets on either side of SS
  - Remove the adjacent correctors
  - Remove the adjacent BPMs
  - Slide other components away from the ID



- Increases space available for ID from 4.8 to 7.7m
- Most cost-effective option for LSS
  - Still, hard to afford more than 8



#### **Lattice Considerations**

- Used parallel evolutionary algorithm to optimize injection aperture and lifetime in simulation
  - Use dozens of independent sextupole knobs
  - APS and ANL computing resources (Fusion, Intrepid) have been important resources
- Have developed three basic lattices:
  - 8 "random" LSS
  - 8RLSS + SPX in sector 7
  - 8RLSS + SPX + RHB in sector 20
- Tests of mock-up lattices are promising
  - Lifetime not as long as desired for most complex lattices



# Long Taper for APS Upgrade

- Longer straight sections will increase effective vertical impedance
  - Single bunch limit 16 mA → 12 m A!
- Longer (linear) tapers will reduce impedance
- Design for 4ID, where the ID VC aperture (5mm) is smallest.





# **Higher Beam Current**

- Presently operate at 100 mA
- Plan for upgrade
  - Increase brightness, flux by running at 150 to 200 mA
  - Upgrade all front ends and beamlines to handle 200 mA
  - Accelerator can run at 150 mA without modification
- If funds permit, upgrade accelerator to 200 mA
  - Replace a few components (e.g., scrapers) to resolve rf heating issues
  - Move to full-time operation with 4 rf systems
    - Reduced reliability
    - Increased electrical power consumption
  - Design/install improved cavity HOM dampers
  - Upgrade input power couplers for all cavities

Concept for improved HOM damper



#### **Beam Stabilization**

- Spurious storage ring vacuum chamber microwave mode dampers
- Real-time feedback system upgrade
- Improved tunnel temperature regulation
- Front-end hard x-ray beam position monitor developments

|            |         | AC Motion*<br>(0.1-200 Hz) |           | Long term<br>(1 week, pk-pk) |          |
|------------|---------|----------------------------|-----------|------------------------------|----------|
| Horizontal | Now     | 5.0 µm                     | 0.85 µrad | 7.0 µm                       | 1.4 µrad |
|            | Upgrade | 3.0 µm                     | 0.5 µrad  | 5.0 µm                       | 1.0 µrad |
| Vertical   | Now     | 1.6 µm                     | 0.8 µrad  | 5.0 µm                       | 2.5 µrad |
|            | Upgrade | 0.4 µm                     | 0.2 µrad  | 1.0 µm                       | 0.5 µrad |

\*0.1-200Hz BW



### **Undulator Developments**

- Presently, most undulators are general-purpose UA
- We envision replacing many undulators with devices customized to experimental requirements
- Possible devices include
  - Customized period length planar undulators
  - Superconducting undulators
    - Provide wide tuning range with short period
    - Much more compatible with hybrid mode than in-vacuum devices
  - Revolver undulators
    - Several planar undulators on a common support
    - User can switch among them at will
    - Another approach to the tuning range dilemma
  - Polarization control (e.g., APPLE)



# **Undulator Brightness Performance**



